

IJMCM Summer 2019, Vol 8, No 3 DOI: 10.22088/IJMCM.BUMS.8.3.179 **Original Article**

Identification of PROS1 as a Novel Candidate Gene for Juvenile Retinitis Pigmentosa

Ata Bushehri¹, Davood Zare-Abdollahi¹, Afagh Alavi¹, Alireza Dehghani², Mohammadreza Mousavimikala³, Hamid Reza Khorram Khorshid^{1*}

1. Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

2. Department of Ophthalmology, Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

3. Department of Ophthalmology, Tabriz University of Medical Sciences, Tabriz, Iran.

Retinitis Pigmentosa (RP)

- Heterogeneous group of genetic disorders.
- Degeneration of rod and cone photoreceptors.
- The earliest clinical manifestation of RP is night blindness, progressing to reduction in midperipheral visual field.
- As the disease becomes worse, the patients develop tunnel vision and eventually lose central vision.

Retinitis Pigmentosa (RP)

- 1 in 3500-4000 in most populations.
- Most cases result from one of a series of monogenic disorders inherited in an autosomal-dominant, autosomal-recessive, or X-linked manner.
- Oligogenic inheritance and mitochondrial inheritance have been established in a small proportion of RP cases.

In clinical practice

- Electroretinogram (ERG)
- Optical coherence tomography (OCT)
- Fundus Autofluorescence (FAF) imaging
- Retinal Pigmented Epithelium (RPE)/Bruch's membrane complex thinning

Retinal Pigmented Epithelium Task

- Nourishing retinal, light sensitive cells.
- Phagocytosis of outer segment (OS) membrane debris

and

Clearance of apoptotic cells, a phenomenon known as efferocytosis.

Apoptotic cell binding

Apoptotic cell internalization and degradation

The protein S (PS) gene (PROS1)

- Protein S is a vitamin K-dependent plasma glycoprotein synthesized in the liver.
- The best characterized function of Protein S is its role in the anti coagulation pathway, where it functions as a cofactor to Protein C in the inactivation of Factors Va and VIIIa.
- PROS1 variants, with loss of function effect, might be associated with an increased risk of thrombosis.
- Heterozygotes are at risk of recurrent venous thrombosis and cardiovascular accidents during adolescence.

The protein S (PS) gene (PROS1)

Homozygotes suffer from purpura fulminans during infancy necessitating fresh frozen plasma administration.

•

- PROS1 encodes a peculiar and biologically relevant ligand of Tyro3/Axl/Mer (TAM) receptors
- Promoting efferocytosis meticulously in high oxygen consumptive tissues like RPE cells.
- It is hypothesized that the proper visual function requires the correct functioning of TAM receptors and their downstream pathways where PS plays a role as well.

The protein S (PS) gene (PROS1)

- PROS1 encodes a peculiar and biologically relevant ligand of Tyro3/Axl/Mer (TAM) receptors
- Promoting efferocytosis meticulously in high oxygen consumptive tissues like RPE cells.
- It is hypothesized that the proper visual function requires the correct functioning of TAM receptors and their downstream pathways where PS plays a role as well.

In this study

- A novel homozygous missense variant in PROS1 gene
- Deleterious variant p.R41P
- Two unrelated consanguineous families associated with non- syndromic RP

No.	Status	PROS1:NM_000313:exon2:c.G122C:p.R41P
V-10	Proband	MMMMMMMM
¥-4	Affected cousin	Mannahaman
V-2	Non-affected sister	Marsontahannin
¥-3	Non-affected brother	Massalahann
¥-5	Non-affected sister	Massalaman
¥-6	Non-affected brother	mmmmm
¥-7	Non-affected brother	mmtmm
V-8	Non-affected sister	Mmmmmm
V-9	Non-affected brother	Manna
V-11	Non-affected brother	mmmmm
V-13	Non-affected sister	Ministrian
V-14	Non-affected sister	Minithin
IV-1	Non-affected mother	Minin

Retinal imaging of patient V-10 (proband) from family A

Family B

No.	Status	PROS1:NM_000313:exon2:c.G122C:p.R41P
¥-4	Proband	Mannahaman
¥-8	Affected brother	montanna
V-3	Non-affected sister	mmmmm
¥-5	Non-affected sister	montiment
V-6	Non-affected sister	mmmmm
V-7	Non-affected brother	Marshann
IV-1	Non-affected mother	mmmm

fppt.com

Retinal imaging of patient V-4 (proband) from family B

Table 1. Clinical description of the patients										
Family.Subject ID/Gender.	A.V-10/M.62	A.V-4/F.60	B.V-4/M.50	B.V-8/M.42						
Age at last review										
	IDA (9)	NB (11)	NB (early teen ages)	NB (11)						
	NB (10)	TVF (mid 20s)	TVF (early 20s)	TVF (early 20s)						
Symptom (Onset)	TVF (mid 20s)	VAD (late 20s)	VAD (mid 20s)	VAD (26)						
	VAD (28)	CS (30)	CS (27)	CS (26)						
	CS (28)	Photophobia	Photophobia	Photophobia						
	Photophobia	Photopsia	Photopsia	Photopsia						
	Photopsia									
VF to confrontation	NA	NA	5°-10° Central	10°-20° Central						
BCVA	OD: LP	OD: LProj	OD: 0.001 (HM@2')	OD: 0.1						
	OS: LProj	OS: LProj	OS: 0.001 (HM@2')	OS: 0.1						
Fundoscopy	VDLP	VDLP	VDLP	VDLP						
	Severe RVA	Severe RVA	RVA	RVA						
	Intensive RL	Intensive RL	Diffuse RL	RL						
	Fiddling BSC	Fiddling BSC	Slight BSC	Slight BSC						
	WODP	WODP	WODP	ODP						
	AFR	AFR	AFR	AFR						
Additional findings	PSC	PSC	PSC	PSC						
	CV:NA	CV: NA	CV: Achromat	CV: Protanopia						
	RE: Plano	RE: Plano	RE: Plano	RE: Plano						
	Fixation: NA	Fixation: NA	Fixation: NA	Fixation: No						
Pattern of functional disorder	RCD	RCD	RCD	RCD						
ОСТ	Retinal atrophy	Not performed	Retinal atrophy	Not performed						
	Epi-retinal									
	membrane (OD)									
ERG	Non-recordable	Not performed	Non-recordable	Not performed						

AFR: absent foveal reflex; BCVA: best corrected visual acuity; BSC: bone spicule configuration; CS: central scotoma; CV: color vision; HM: hand motion; IDA: impaired dark adaptation; LProj: recognition of light projection; LP: light perception; NA: not applicable; NB: night blindness; OCT: optical coherence tomography; ODP: optic disc pallor; OD: right eye; OS: left eye; PSC: posterior sub-capsular cataract; RE: refractive errors; RL: RPE loss; RVA: retinal vessels attenuation; TVF: Tunnel visual field; VAD: visual acuity disturbance; VDLP: vitreous dust like particles; VF: visual field; WODP: waxy optic disc pallor;

•

Molecular genetics investigation

- Written informed consent was obtained from all participants.
- Following obtaining 5 ml blood samples from all family members
- Genomic DNA was extracted using salting out method.
- Whole- exome sequencing (WES) was performed on two patients, one from each family.
- Concerning validity, confirmation of candidate variants and segregation analysis were performed on 4 subjects, 2 mothers and 14 non- affected siblings.

Results

PROS1:NM_000313:exon2:c.G122C:p.R41P

It converts

• Arginine (R), which is an amino acid with hydrophilic and amphipathic moiety and contains a highly polar positively charged guandino group,

to

• Proline (P), a hydrophobic amino acid with an exceptional conformational rigidity owing to the distinctive cyclic structure of its side chain.

	Q	Options 🗸	Display: 🗹 Highlights
PROTEIN S PSEUDOGENE, INCLUD PROTEIN S, BETA, INCLUDED; PSB, INCLUDED PROS2, INCLUDED	ED; PF	ROSP, IN	CLUDED

HGNC Approved Gene Symbol: PROS1

Cytogenetic location: 3q11.1 Genomic coordinates (GRCh38): 3:93,873,050-93,973,895 (from NCBI)

Gene-Phenotype Relationships

View clinical synopses as a table

Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key
3q11.1	Thrombophilia due to protein S deficiency, autosomal dominant	612336	AD	<u>3</u>
	Thrombophilia due to protein S deficiency, autosomal recessive	614514	AR	<u>3</u>

PheneGene Graphics - 😧

TEXT

Description

fppt.com

Table 2a. Conserved 18-amino acid propeptide sequences upstream of human vitamin K-dependent (VKD) proteins																		
VKD propeptide	-18	-17	-16	-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1
Protein S	А	N	F	L	S	K	Q	Q	Α	S	Q	V	L	V	R	Κ	R	R
Protein C	S	V	F	S	S	S	E	R	Α	Н	Q	V	L	R	Ι	R	Κ	R
Factor X	S	L	F	Ι	R	R	E	Q	Α	N	N	Ι	L	А	R	V	Т	R
Factor IX	Т	V	F	L	D	Н	E	Ν	Α	N	K	Ι	L	N	R	Р	Κ	R
Factor VII	R	V	F	V	Т	Q	Е	Е	Α	Η	G	V	L	Η	R	R	R	R
Prothrombin	Н	V	F	L	А	Р	Q	Q	Α	R	S	L	L	Q	R	V	R	R
PRGP1	R	V	F	L	Т	G	Е	K	Α	N	S	Ι	L	K	R	Y	Р	R
Matrix Gla Protein	N	Р	F	Ι	N	R	R	N	A	N	Т	F	Ι	S	Р	Q	Q	R
Bone Gla Protein	K	А	F	V	S	K	Q	E	G	S	E	V	V	K	R	Р	R	R

Highly conserved amino acids (F -16, A -10, L -6 and R -1) are highlighted in yellow.

Table 2b. High degree of similarity of propeptide of PS among vertebrates -8 -9 -7 -6 -5 -4 -3 -2 -1 Similarity **Propeptide of PS** -18 17 16 15 14 13 12 11 10 Ν L S Κ Q Human F Q A S Q V V R Κ R R 100% Α L Chimpanzee Ν F L S Κ Q Q A S Q Ι L V R Κ R R 94% Α F S Κ Q Α S Q V L V R Κ 94% Gorilla Ν F Q R R Α S Κ R Κ Marmoset Α Ν F L Q Q Α S Q V L Ι R R 94% R V V Т Ν F L S Κ E Α S Q L R Κ R R 83% Mouse R Η V V R R R R 83% Ν F L S Q Α S Q L Sheep Α Armadillo D S Ι L S Κ Q Y Α S Q V L F R Κ R R 72% S Y R K 67% Chicken Α Т F L Η Q Α S E F L Α R R S F L L Q Y Α S E F V R Κ **Chinese turtle** Μ Q L R R 61% **Xenopus** R Т F L S Р Q Y S E F Ν R R R R 56% A L Q S Κ E F L Zebrafish Q R F L Р Α S L R Η R R 44% Η F L Q Q S Т L F R R Asian bonytongue Q A Q L Α R R 44% F S S S L L G R S Q F S R R **Big-finned** A L Q R 44% mudskipper

Highly evolutionary conserved amino acids (A -10, L -6, R -4, -2 and -1) are highlighted in yellow.

PtdSer-PS-MerTK

PtdSer-PS-MerTK signaling clears apoptotic cells and debris, and prohibits the chronic immune response.

- Mutations of MERTKgene, encoding MerTK protein, are known as the cause of inherited RP (RP38; OMIM: 613862).
- Defect in activation of MerTk results in efferocytosis failure of RPE cells.
 - As revealed, TAM triple knockout mice (TKO) developed visual impairment in adulthood. Intriguingly, the phenotype of TKO infant mice are significantly similar to that of wild types

PtdSer-PS-MerTK

AsTAM receptors expression is dramati- cally increased after birth and kept at high levels in adulthood, it indicates its critical role in postnatal maintenance of visual function.

In fact, elimination of MerTK phosphorylation causes adult onset retinal degeneration through accum- ulation of debris and subsequent innate immunity inducement.

fppt.com

- It has been cleared that the retina and particularly RPE cells have the highest metabolic expenditure among body tissues, far higher than brain and kidney in terms of oxygen consumption levels.
- inadequate function of PS at demanding RPE, ensuing cumulative failure of MerTK mediated efferocytosis, pursuant progressive expansion of innate immunity in the retina and subsequent drusen formation in Bruck's membrane finally result in adult onset rod-cone dystrophy.

- Previous reports have noted the existence of retinopathy accompanied with recurrent venous thromboses in patients with PS deficiency, mainly due to thrombosis-mediated retinal venoocclusion, starting very early in utero.
- In the case of our patients, it is hypothesized that the mechanism of pathogenicity is different. In fact, degeneration of photoreceptors begins sometime after birth due to dysregulation of innate immunity as a sequel of impaired efferocytosis.

•

Taken together

Based on co-segregation of this mutation, particularly in two unrelated families, an intriguing similar RP-like phenotype and the intimate interaction of PS and MerTK in maintaining photoreceptor and RPE homeostasis, led the role of some mutations in the PROS1 gene in the pathogenesis of RP to be raised.